| Module designation | Experimental in Physical Chemistry (PKF) | |---|--| | Semester(s) in which the module is taught | 4 | | Person responsible for the module | Physical Chemistry Team | | Language | Indonesian | | Relation to curriculum | Compulsory / elective / specialisation | | Teaching methods | Labwork | | Workload (incl. contact hours, self-study hours) | Face to Face: 1 x (1 x 50 min); Self Study: 1 x (1 x 60 min); Structured tasks: 1 x (1 x 60 min) | | Credit points | 1 | | Required and recommended prerequisites for joining the module | PKD2, PKA | | Module objectives/intended learning outcomes | Students can measure the heat of reaction with a calorimeter Students can determine Interaction Energy with Computing Students can measure the surfactant CMC value students can measure and calculate reaction rate constants due to the influence of concentration and temperature Students can measure the concentration of absorbed substances and calculate the Langmuir constant Students can measure their engagement of it Vit. C during storage to determine its stability Vit. C Students can use the Oswald viscometer to determine the BM of polymer students can interpret IR spectra with computation Students can calculate the heat of dissolution and explain the relationship between solubility and temperature Students measure the apparent reaction order of coconut cream, solving | | Content | Laboratory Management and Laboratory Safety Concept of quantum theory, Concept of energetic theory, and Concept of kinetic theory Concept of energetic theory and determination of heat of reaction with a colorimeter Intermolecular Interaction: Determination of Interaction Energy by Computing Intermolecular Interaction: Colloidal Concept, determination of critical micelle concentration (CMC) of surfactants The concept of kinetics: the effect of concentration and temperature on the reaction rate Interface concept: adsorption on a solution Quantitative analysis: stability of vitamin C Determination of Chitosan Molecular Weight Using Viscosity Method Infrared (Ir) Spectra Modeling With Computing Solubility as a function of temperature Reaction Kinetics of Coconut Cream Emulsion Breaking By Acid Discussion Presentation Response | |------------------------------------|---| | Exams and assessment formats | Response | | Study and examination requirements | | | Reading list | Daniels, 1970, Experimental Physical Chemistry, ed. 7 Atkins, P.W., 1995, Physical Chemistry, 5th edition Glasstone, 1956, Elements of Physical Chemistry, cetakan ke 14 |